Ion transport in porous media: derivation of the macroscopic equations using up-scaling and properties of the effective coefficients

نویسندگان

  • Grégoire Allaire
  • Robert Brizzi
  • Jean-François Dufrêche
  • Andro Mikelić
  • Andrey Piatnitski
چکیده

In this work we undertake the upscaling of a system of partial differential equations describing transport of a dilute N -component electrolyte in a Newtonian solvent through a rigid porous medium. The motion is governed by a small static electric field and a small hydrodynamic force, which allows us to calculate the linear response regime in a way initially proposed by O’Brien. The O’Brien partial linearization requires a fast and accurate solution of the underlying nonlinear Poisson-Boltzmann equation. We present an analysis of it, with the discussion of the boundary layer appearing as the Debye-Hückel parameter becomes large. Next we present briefly the corresponding two-scale asymptotic expansion and reduce the obtained two-scale equations to a coarse scale model. Our previous rigorous study assures that the ∗Ecole Polytechnique, CMAP, UMR CNRS 7641, 91128 Palaiseau Cedex, France ([email protected]) †Ecole Polytechnique, CMAP, UMR CNRS 7641, 91128 Palaiseau Cedex, France ([email protected]) ‡Université de Montpellier 2, Laboratoire Modélisation Mésoscopique et Chimie Théorique (LMCT), Institut de Chimie Séparative de Marcoule ICSM UMR 5257, CEA / CNRS / Université de Montpellier 2 / ENSCM Centre de Marcoule , Bât. 426, BP 17171, 30207 Bagnols sur Cèze Cedex, France ([email protected]) §Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Département de mathématiques, Institut Camille Jordan, UMR 5208, 43, Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France ([email protected]) ¶Narvik University College, Postbox 385, 8505 Narvik, Norway; Lebedev Physical Institute RAS, Leninski ave., 53, 119991 Moscow, Russia ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A “v2-f Based” Macroscopic K-Ε Model for Turbulent Flow through Porous Media

In this paper a new macroscopic k-ε model is developed and validated for turbulent flow through porous media for a wide range of porosities. The morphology of porous media is simulated by a periodic array of square cylinders. In the first step, calculations based on microscopic v2 − f model are conducted using a Galerkin/Least-Squares finite element formulation, employing equalorder bilinear ve...

متن کامل

Transport Property Estimation of Non-Uniform Porous Media

In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...

متن کامل

A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media

This work aims to model turbulent flows in media laden with solid structures according to porous media approach. A complete set of macroscopic transport equations is derived by spatially averaging the Reynolds averaged governing equations. A two-scale analysis highlights energy transfers between macroscopic and sub-filter kinetic energies (dispersive and turbulent kinetic energies). Additional ...

متن کامل

Homogenization of the Poisson-Nernst-Planck equations for Ion Transport in Charged Porous Media

Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component periodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features...

متن کامل

Dynamic Analysis of Porous Media using Generalized Plasticity Model and Non-Darcy Flow Rule

Biot equations that consider fluid and soil interaction at the same time are the most applicable relationships in the soil dynamic analysis. However, in dynamic analysis, due to the sudden increase in the excess pore pressure caused by seismic excitation and the occurrence of high hydraulic gradients, the assumption of the Darcy flow used in these equations is questionable. In the present study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012